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THE SYMMETRIC P-STABLE HYBRID OBRECHKOFF METHODS FOR
THE NUMERICAL SOLUTION OF SECOND ORDER IVPS

ALI SHOKRI1

Abstract. This paper presents new two-step explicit symmetric P-stable methods, including

Obrechkoff and hybrid terms, of orders four and six for solving initial value problems of second

order ordinary differential equations. In this paper, we improved the method written by Xinyuan

Wu and Qinghong Li [11], in a way that we could increase order and accuracy of their methods.

The numerical results obtained by the new methods on some IVPs equations show the superior

efficiency, accuracy, stability of the methods presented in this paper.
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1. Introduction

Let us consider the initial value problems of second order ordinary differential equations

y′′ = f(x, y), y(x0) = y0, y′(x0) = y′0, (1)

where we presume that f(x, y) is sufficiently differentiable and that the first derivative does not
appear explicitly in f(x, y). The numerical methods have been paid much attention to in recent
years because the problems are usually encountered in celestial mechanics, quantum mechanical
scattering theory, theoretical physics and chemistry, and electronics. Generally, the solution of
(1) is periodic, so it is expected that the results produced by some numerical methods be of the
periodicity of the analytic solution. In 1976, Lambert and Watson [10] proposed the concepts of
periodicity interval and P-stability which can be used to discuss the stability of the numerical
method for second order initial value problems. Although many P-stable methods have been
proposed, such as linear multistep methods, high order hybrid P-stable methods, implicit Runge-
Kutta-Nystrom and so on [9], these methods are implicit, so an iteration subprocess is needed in
each step. The numerical integration methods for (1) can be divided into two distinct classes: (a)
problems for which the solution period is known (even approximately) in advance (see [8, 12]);
(b) problems for which the period is not known. There is a vast literature available for the
numerical solution of this problem. Computational methods involving a parameter proposed by
Sesappa Rai et al [13, 14], Shokri [15, 16] and Xiang [22] yield the numerical solution to the
problem of the first class. Numerical treatment to the problems of the second class have been
presented by Chawla et al [4, 5], Simos [17], Hollevoet et al [8], Ananthakrishnaiah [1, 2], and
Chawla and Neta [3].
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Lambert and Watson [10], have developed linear, symmetric multistep methods of the form
k∑

j=0

αjyn+1−j = h2
k∑

j=0

βjfn+1−j , k ≥ 2, (2)

where h(> 0) is the step length of integration and αj = αk−j , βj = βk−j , j = 0(1)k, on the
discrete point set {xn : xn = nh, n = 0, 1, . . .}, for finding the numerical solution of the special
initial value problem (1). They derive methods for k = 2, 4 and 6. Motivated by the idea, we
will present the new two-step explicit P-stable methods of orders four and six for solving (1).

In recent years a class of explicit methods at high order for stiff problems is presented by
some authors (see [6, 7, 18, 19, 20, 21]) in which with the aid of a special vector operation, these
methods can be extended to be vector-applicable [11]. Motivated by the idea, we have presented
a class of two-step explicit symmetric P-stable methods for solving (1) [16]. This method has
convergence of orders four and six.

2. Preliminaries

To investigate the stability properties of methods for solving the initial value problem (1),
Lambert and Watson [10] introduced the scalar test equation

y′′ = −ω2y, ω ∈ R. (3)

When applying a symmetric two-step method to the test equation (3), one obtains the following
difference equation of the form:

yn+1 − 2C(H)yn + yn−1 = 0, (4)

where H = ωh and h is a fixed step length, C(H) is a rational polynomial with respect to H.
The characteristic equation and polynomial are defined by the following respectively:

ξ2 − 2C(H)ξ + 1 = 0, (5)

Q(z, ξ) = Q0(z2)ξ2 + Q1(z2)ξ + Q2(z2), (6)

where z = iwh and Q0(z2), Q1(z2), and Q2(z2) are determined by the left side of (4) (see [6]).

Definition 2.1. Let ξ1, ξ2 be the two roots of (4), the method (2) is unconditionally stable if
| ξ1 |≤ 1, | ξ2 |≤ 1 for all values of wh.

Definition 2.2. The interval (0,H2
0 ) is the periodicity interval of the method (2) if the roots of

(4) satisfy ξ1 = ξ2 = eig(H), for all H2 ∈ (0,H2
0 ), where g(H) is a real function of H.

Definition 2.3. The method (2) is P-stable if the periodicity interval of the method is (0, +∞).

Definition 2.4. The order of the root of (5) (say ξ1) is p if ξ1 satisfies

ez − ξ1 = Czp+1 + O(zp+2), z → 0, (7)

where C is the error constant of ξ1.

Theorem 2.1. Suppose (4) is the characteristic equation of some method, and | C(H) |< 1 for
all H2 ∈ (0,H2

0 ), then the interval of periodicity of the method is (0, H2
0 ).

Proof. See [10]. ¤
Theorem 2.2. Set p ≥ 1, the root of the characteristic polynomial of some method is of order
p if and only if

Q(z, ez) = C
∂2Q

∂ξ2
(0, 1)zp+2 + O(zp+3), z → 0. (8)
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Proof. See [7]. ¤

Lambert and Watson [10] have proved that the method described by (2) has a nonvanishing
interval of periodicity only if it is symmetric and for P-stability the order cannot exceed 2.
Further, the method is implicit. Later Chawla and Rao [5] noted that Numerov method has
phase-lag error of H6

480 and derived a Numerov type method of algebraic order four with minimal
phase-lag H6

12096 and having an periodicity interval (0, 2.71). This method is implicit and its
implementation involves the computations of Jacobians and solution of nonlinear systems of
equations. So subsequently many authors proposed explicit modifications of Numerov method.

3. The new nonlinear hybrid Obrechkoff methods

First of all, we introduce the our new hybrid Obrechkoff method, for solving second order
initial value problem of ordinary differential equations (1) as follow

yn+1 = 2yn exp
(

1
2yn

(
h2fn + h4b(f ′′n+α + f ′′n−α)

))− yn−1, (9)

where h is the step length and α, b are two arbitrary parameters such that 0 < α < 1 and
presume yn 6= 0. The above formula (9) can only be used if we know the values of the solution
y(x) and y′′(x) at two successive points. These two values will be assumed to be given. Further,
this method is called an explicit or predictor formula because yn+1 occurs only on the left hand
side of the formula. In other words, yn+1 can be calculated directly from the right hand side
values.

Now with the difference equation (9), we can associate the difference operator L defined by
next definition.

Definition 3.1. Let the differential equation (1) has unique solution y(x) on [a, b] and that
y(x) ∈ C(p+2)[a, b] for p ≥ 1. Then the deference operator L for the method of (9) is can be
written as

L[y(x), h] = y(x + h) + y(x− h)−
− 2y(x) exp

(
1

2y(x)

(
h2y′′(x) + h4b

(
y(4)(x + αh) + y(4)(x− αh)

)))
.

Expanding y(x + h), y(x − h), y(4)(x + αh), y(4)(x − αh) and exp(..) in Taylor’s series, by
simple calculation, we have

L[y(x), h] =
(

1
12
− 2b

)
h4y(4)(xn) +

(
1

360
− bα2

)
h6y(6)(xn) +

+
(

1
20160

− 1
12

bα4

)
h8y(8)(xn) + O(h10). (10)

Then we get

L[y(x), h] = C0y(xn) + C1hy(1)(xn) + · · ·+ Cph
qy(p)(xn) + · · · ,

where C0 = C1 = C2 = C3 = 0, C4 = 1
12 − 2b, C5 = 0, C6 = 1

360 − bα2, C7 = 0 and
C8 = 1

20160 − 1
12bα4 and etc.

Definition 3.2. The hybrid Obrechkoff method (9) are said to be of order p if,

C0 = C1 = C2 = · · · = Cp+1 = 0 , Cp+2 6= 0,

thus for any function y(x) ∈ C(p+2) and for some nonzero constant Cp+1, we have

L[y(x), h] = Cp+2h
p+2y(p+2)(xn) + O(hp+3), (11)
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where Cp+2 is called the error constant.

In particular, L[y(x), h] vanishes identically when y(x) is polynomial whose degree is less than
or equal to p.

Applying (9) to the scalar test equation (3), one gets its characteristic equation C(H), where
H2 = (ωh)2 and C(H) = exp(−1

2H2 + bH4 − 1
2bα2H6).

Theorem 3.1. The method presented in (9), for all
√

b < α < 1 is P-stable.

Proof. In order to prove the above theorem we must provide conditions such that | C(H) |< 1
for every H2. Therefore we discuss for behavior of −1

2H2+bH4− 1
2bα2H6 < 0, considering α and

b. That is, the limitation of α and b should be calculated in a way that P-stable is warranted.
Then we have

−1
2
H2 + bH4 − 1

2
bα2H6 = H2

(
− 1

2
+ bH2 − 1

2
bα2H4

)
< 0, (12)

so

−1
2

+ bH2 − 1
2
bα2H4 < 0.

For this propose by assuming H2 = x, the coefficient of x2 and ∆ from quadratic polynomial
ϕ(x) = −1

2 +bx− 1
2bα2x2 are negative. Then we have −1

2 +bx− 1
2bα2x2 < 0, so then −1

2bα2 < 0,
and ∆ < 0, where ∆ = b2−bα2 < 0 and this means that α2 > b for all 0 < α < 1 and −1

2bα2 < 0.
So b > 0 and then α >

√
b. Therefore

√
b < α < 1 and will have −1

2 + bx− 1
2bα2x2 < 0. That is

say | C(H) |< 1, which warranties the P-stability of the method and completes the proof. ¤

Theorem 3.2. Method (9) is of order 4 if b = 1
24 and α 6=

√
24
360 and it is of order 6 if b = 1

24

and α =
√

24
360 .

Proof. Since C0 = C1 = C2 = C3 = C5 = 0 and C4 = 1
12 − 2b, if we take b = 1

24 then C4 = 0
and this means that our new method is of order at least 4. Furthermore, since C7 = 0 and by

assuming b = 1
24 , the amount of α =

√
24
360 is the only root of C6. Then if α 6=

√
24
360 , the order

of the new hybrid Obrechkoff method is exactly 4 and if α =
√

24
360 , the order is 6 and in this

case the local truncation error is

E8 = 3.4171× 10−5h8y(8)(ζ),

and this completes the proof. ¤

Lemma 3.1. The Phase-lag of method (10) is of order two.

Proof. By a simple calculation, the proof is clear. ¤

By choosing b = 1
24 , we can write the new two-step P-stable hybrid Obrechkoff method as

follow

yn+1 + yn−1 = 2yn exp
(

1
2yn

(
h2fn +

h4

24
(f ′′n+α + f ′′n−α)

))
,

√
6

12
< α < 1. (13)

If we take α = 1
2 , we have

yn+1 + yn−1 = 2yn exp
(

1
2yn

(
h2fn +

h4

24

(
f ′′

n+ 1
2

+ f ′′
n− 1

2

)))
, (14)
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is the explicit two-step P-stable hybrid Obrechkoff method of order 4. Moreover its local trun-
cation error is

E6 = − 11
1440

h6y(6)(ζ).

If we take α =
√

24
360 , we have

yn+1 + yn−1 = 2yn exp

(
1

2yn

(
h2fn +

h4

24

(
f ′′

n+
√

24
360

+ f ′′
n−

√
24
360

)))
, (15)

is the explicit two-step P-stable hybrid Obrechkoff method of order 6. Moreover its local trun-
cation error is

E8 = 3.4171× 10−5h8y(8)(ζ).

Table 1. Absolute errors for the example 4.1, with h = π/200 and h = π/400, are calculated

for comparison among two methods: Li and Wu [11] and our new method (14).

New method (14) Wu’s method
Point h = π

200 h = π
400 h = π

200 h = π
400

5π 2.3659e-004 1.2514e-006 5.1541e-002 3.2539e-003
10π 5.1547e-004 3.2547e-006 2.0104e-001 1.3001e-002
15π 6.2689e-004 7.2546e-006 4.3307e-001 2.9117e-002
20π 8.3654e-004 9.8541e-006 7.2365e-001 5.1678e-002

4. Numerical examples

In this section, we present some numerical results obtained by our new nonlinear methods
and compare them with those of other multistep methods.

Example 4.1. Consider the scalar test equation y′′ = −ω2y, y(0) = 1 and y′(0) = 0, with the
exact solution y = cos(ωx).

Set ω = 10. Absolute errors in y(x), with h = π/200, π/400, π/800 and π/1600, obtained by
the new method (14), are listed in Tables 1 and 2 for comparison, where the other numerical
results are from Li and Wu [11].

Example 4.2. Consider the initial value problem y′′ = 50y3, y(1) = 1/6 and y′(1) = −5/36,
with the exact solution y(x) = 1/(1 + 5x).

In the numerical experiment, we take the step length h = 0.1, 0.01, 0.001, and for simplicity,
the true value at x = 1 + h is taken as the second starting value. In Tables 3 and 4, we present
the absolute errors at the points x = 5, 10, 15, 20.

Example 4.3. Consider the two-body problem
{

y′′1 = −y1

r3 , y1(0) = 1, y′1(0) = 0,
y′′2 = −y2

r3 , y2(0) = 0, y′2(0) = 1,

where r =
√

y2
1 + y2

2.
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Table 2. Absolute errors for the example 4.1, with h = π/800 and h = π/1600, are calculated

for comparison among two methods: Li and Wu [11] and our new method (14).

New Method (14) Wu’s Method
Point h = π

800 h = π
1600 h = π

800 h = π
1600

5π 1.6532e-007 2.5567e-09 2.0362e-004 1.2731e-005
10π 3.1128e-007 5.2398e-09 8.1460e-004 5.0928e-005
15π 6.8875e-007 6.9971e-08 1.8327e-003 1.1459e-004
20π 9.5563e-006 9.2013e-08 3.2575e-003 2.0372e-004

Table 3. Absolute errors for the example 4.2, with h = 0.1, h = 0.01 and h = 0.001, are

calculated for comparison among two methods: Li and Wu [11] and our new method (14).

Method (14)
x h = 0.1 h = 0.01 h = 0.001
5 1.1325e-005 2.7745e-007 2.0025e-010
10 4.2034e-005 4.0102e-007 5.8625e-010
15 6.1478e-004 5.1436e-007 6.0369e-009
20 9.0336e-004 8.1129e-006 8.4412e-009

Table 4. Absolute errors for the example 4.2, with h = 0.1, h = 0.01 and h = 0.001, are

calculated for comparison among two methods: Li and Wu [11] and our new method (14).

Wu’s Method
x h = 0.1 h = 0.01 h = 0.001
5 2.4119e-003 3.0515e-005 3.1215e-007
10 1.6102e-002 2.3060e-004 2.3630e-006
15 4.0043e-002 7.5739e-004 7.8201e-006
20 1.5401e-001 1.7428e-003 1.8350e-005

The true solution is y1 = cos(x), y2 = sin(x). In the numerical experiment, we take the step
length h = π/200, π/400, π/800, π/1600, and for simplicity, the true value at x = h is taken as
the second started value. In tables 5 and 6, we gives the errors (infinite norm) at point x = 50π,
100π, 150π, 200π.

Table 5. Absolute errors for the example 4.3, with h = π/200 and h = π/400 are calculated

for comparison among two methods: Li and Wu [11] and our new method (14).

New Method (14) Wu’s Method
Point h = π

200 h = π
400 h = π

200 h = π
400

x = 50π 2.3214e-5 1.2987e-7 1.2898e-002 3.3073e-003
x = 100π 4.2564e-5 3.2769e-7 2.5789e-002 4.4419e-003
x = 150π 7.1239e-5 6.1478e-7 3.8678e-002 9.5241e-003
x = 200π 9.2036e-4 8.0036e-6 5.1661e-002 1.2743e-002
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Table 6. Absolute errors for the example 4.3, with h = π/800 and h = π/1600 are calculated

for comparison among two methods: Li and Wu [11] and our new method (14).

New Method (14) Wu’s Method
Point h = π

800 h = π
1600 h = π

800 h = π
1600

x = 50π 1.2158e-9 2.9817e-11 5.1930e-004 3.3093e-004
x = 100π 3.6987e-9 4.0065e-11 1.1391e-003 1.4533e-004
x = 150π 6.3104e-9 6.3691e-11 1.7547e-003 4.6950e-004
x = 200π 9.9812e-8 8.0651e-10 2.6830e-003 3.9078e-004

5. Conclusions

In this paper, we have presented the new symmetric P-stable nonlinear hybrid Obrechkoff
method of orders 4 and 6. The details of the procedure adapted for the applications have been
given in Section 3. With high derivatives in off-step points, we have improved the algebraic
order of this method up to six. The numerical results obtained by the new method for some
problems show its superiority in efficiency, accuracy and stability.
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